
Materialized View Selection in XML Databases

Nan Tang†, Jeffrey Xu Yu‡, Hao Tang⋄, M. Tamer Özsu§, and Peter Boncz†

† CWI, Amsterdam, The Netherlands email:{N.Tang,P.Boncz}@cwi.nl
‡ The Chinese University of Hong Kong, Hong Kong email:yu@se.cuhk.edu.hk

⋄ Renmin University, Peking, China email:haotang@ruc.edu.cn
§ University of Waterloo, Ontario, Canada email:tozsu@cs.uwaterloo.ca

Abstract. Materialized views, a rdbms silver bullet, demonstrate its
efficacy in many applications, especially as a data warehousing/decison
support system tool. The pivot of playing materialized views efficiently
is view selection. Though studied for over thirty years in rdbms, the
selection is hard to make in the context of xml databases, where both
the semi-structured data and the expressiveness of xml query languages
add challenges to the view selection problem. We start our discussion
on producing minimal xml views (in terms of size) as candidates for
a given workload (a query set). To facilitate intuitionistic view selec-
tion, we present a view graph (called vcube) to structurally maintain all
generated views. By basing our selection on vcube for materialization,
we propose two view selection strategies, targeting at space-optimized
and space-time tradeoff, respectively. We built our implementation on
top of Berkeley DB XML, demonstrating that significant performance
improvement could be obtained using our proposed approaches.

1 Introduction

Materialized views, a rdbms silver bullet, increase by orders of magnitude the
speed of queries by allowing pre-computed summaries. In the context of xml

databases, both the semi-structured data and the expressiveness of xml query
languages complicate the selection of views. Answering xml queries using ma-
terialized views [4,7,15,16,22,24] and xml view maintenance [20,21] have been
addressed recently, however, the problem of materialized view selection, which
plays an important role in profiting from the above notable achievements of an-
swering xml queries using views, is not well discussed. In this work, we describe
a framework of selecting xml views to materialize. Broadly speaking, the prob-
lem of view selection in xml databases is the following: given xml databases
X , storage space B and a set of queries Q, find a set of views V over X to
materialize, whose combined size is at most B.

The problem of view selection is well studied in on-line analytical processing
(olap) in data warehouses [5, 6, 9, 10, 13, 25], where multiple aggregated views
are organized as a data cube [11,18] for pre-computed summaries. This problem
is generalized to network environments e.g. distributed databases [14] and p2p

networks [8], as both computation cost and net communication could be saved.

(part) (supplier) (customer)

(part, supplier) (part, customer) (supplier, customer)

(part, supplier, customer)

(none)

Fig. 1. Sample Data Cube

Q1 //conference[@booktitle = “SIGMOD”or“VLDB”]
/author[@name = “Venky Harinarayan”
or“Jeffrey D. Ullman”]

Q2 //conference[@keyword = “view”or“data cube”]
/author[@name = “Jeffrey D. Ullman”]

Q3 //conference[[@keyword = “view”or“data cube”]
and[@booktitle = “SIGMOD”or“VLDB”]]

Table 1. Sample xml Queries

xml is a new standard for data exchange over the Internet, with standardized
query languages (e.g. xpath and xquery). There are similarities, and differences
(in syntactic level) for the view selection problem between xml and relational
databases: (i) there is inherent impedance mismatch between the relational (sets
of tuples) and xml (ordered tree) data model; (ii) sql is for relational data which
is flat, regular, homogeneous and unordered. xpath and xquery are for xml

data which is nested, irregular, heterogeneous and ordered. Both items add to
the complexity of the view selection problem.

We consider fundamental properties of view selection for optimizing a given
query workload, with the objective in accordance with the formal perspective
of view selection in rdbms [6]. There are two conventional solutions in rdbms:
common subexpressions exploitation and query aggregation. The main problem
of adopting common subexpressions is that the deep copied xml fragments lose
the structural information required for performing the subsequent structural
joins. While in rdbms, the relational algebra is straightforwardly operated on
intermediate tuples.

Next we discuss whether query aggregation can be applied. We review this
technique in rdbms first. Consider a TPC-D database with three tables: part,
supplier and customer. The 8 possible groupings of tables are depicted in Fig-
ure 1. Computing each of the 8 groups of tables can be derived from the cells
that are reachable to it, e.g., (part) can be derived from (part, supplier), (part,
customer) and (part, supplier, customer). There are two difficulties of applying
this technique in xml, considering the three xml queries in Table 1. (1) Enumer-
ating all views that may contribute to answering a query is expensive. Assume
that, given a query, we can find all views to answer it by relaxing queries [3]. For
example, relax query axis e.g. //conference/author to //conference//author in
Q1 and Q2; generalize label to wildcard ∗ e.g. //conference to //∗ in Q1−3, etc.
The number of queries in this problem space is prohibitively large, which makes
it infeasible. (2) Given candidate views, what relationships among them are to
be maintained and in which way to organize them such that efficient algorithms
might be devised, like data cube for rdbms. Note that query/view answerability
is closely related to query/view containment [16,17]. On the surface, it is natural
to maintain the containment relationship between views. However, checking con-
tainment of xpath queries is coNP-complete [17], with only a restricted syntax
set (/, //, ∗ and branches [· · ·]). This indicates that it is impractical to find all
containment relationships among candidate views.

Contributions & Roadmap. We start with an introduction of xml query and
problem statement in Section 2. In Section 3, we prove the existence and unique-

ness of a minimal view to answer two given queries, followed by an algorithm to
generate such a view. We then describe, given multiple queries, how to generate
a minimal view set while ensuring optimality. This solves the first difficulty. Note
that computing the containment relationship between all candidate views (V)

requires P
|V|
2 (order 2 permutation of |V|) comparisons. In Section 4, we propose

to maintain the minimal view set using a directed acyclic graph, called vcube,
to solve the second difficulty. vcube maintains the answerability relationship
between views as edges, along with the process of generating views. This avoids
computing the relationship between views pairwise, which is expensive. In Sec-
tion 5, we describe two algorithms on top of vcube to select a set of views
to materialize. Moreover, extensive experiments are conducted in Section 6 to
show the efficiency of our proposed algorithms in boosting query performance.
We conclude this paper in Section 7 with outlook on future works.

2 XML View Selection

2.1 Preliminaries

xpath query. The set of xpath queries studied in this paper is given in Table 2.
It may involve the child-axis (/), descendant-axis (//), wildcards (∗) and pred-
icates. Predicates can be any of these: equalities with string, comparisons with
numeric constants, or an arbitrary xpath expression with optional operators
“and” and “or”. Sample xpath queries may reference to Table 1.

Path ::= Step+

Step ::= Axis NameTest Predicates?

Axis ::= “/” | “//”
NameTest ::= elementName | “ ∗ ”
Predicates ::= “[” Expr “]”

Expr ::= Step | OrExpr
OrExpr ::= AndExpr | OrExpr “or” AndExpr

AndExpr ::= CompExpr | AndExpr “and” CompExpr | Step
CompExpr ::= “@” attributeName Comp Value

Comp ::= “ = ”|“ > ”|“ < ”|“ >= ”|“ <= ”|“!= ”
Value ::= Number | String

Table 2. Query Definition

Query containment. The con-
tainment of xpath fragments
involving /, //, ∗ and [] is studied
in [17]. The extension of xpath

fragments containing additional
operators “and” and “or” in
predicates is studied in [4]. We
borrow the definition of con-
tainment of queries from [17].
For an xml query P , P (X) de-
notes the boolean result of P
over database X . We say P (X) true if there exists at least one result; it is false

otherwise. For two queries P and Q, P is contained in Q, denoted as P ⊑ Q, iff
P (X) implies Q(X), in every xml database X . Containment is a partial order,
i.e., V ⊑ P, P ⊑ Q ⇒ V ⊑ Q. Equivalence is a two-way containment. Two
queries P, Q are equivalent, denoted as P ≡ Q, iff P ⊑ Q and Q ⊑ P .

Example. (1) //a/b is contained in //a//b, since the //-axis is more general than
/-axis; (2) //a/b is contained in //a/∗, since the wildcard ∗ matches any label;
(3) //a[@n < 10] is contained in //a[@n < 100]; (4) //a[@s = “x”] is contained in
//a[@s = “x” or @s = “y”].

Answering queries using views. Existing works focus on rewriting a given
query using materialized view with/without accessing the base data. We attempt

to use the materialized view only to answer a query, without accessing the base
data. V � Q denotes that a view V can be used to answer a query Q. V � Q de-
notes that a view V can be used to answer each query in Q = {Q1, Q2, · · · , Qn}.

2.2 Problem Statement

xml view selection. The problem of xml view selection is formally defined as
follows: let Q = {Q1, Q2, · · · , Qn} (each Qi is associated with a non-negative
weight wi) be a workload, X be an xml database, B be the available storage
space, and cost() be a cost estimation function for query processing. The prob-
lem is to find a set of views V whose total size is at most B that minimizes:

cost(X ,V ,Q) =
∑

Qi∈Q

cost(X ,V ,Qi)× wi (1)

here, cost(X ,V ,Qi) denotes the cost of evaluating query Qi using some view
in V , which is materialized over the xml database X . This object function is in
accordance with the formal perspective of view selection in rdbms [6].

The optimal solution. For a query Q1, the complete set of candidates C1 is
all views V that may answer Q1, i.e., C1 = {V |V � Q1}. The complete set of
candidates C for a workload Q = {Q1, Q2, · · · , Qn} is C =

⋃n
i=1 Ci. The näıve

way is to enumerate all candidate views C. Then, by exhaustively searching C to
identify the optimal solution (i.e. a view set O) that minimizes Equation 1.

There is no existing work to enumerate all complete candidate views. As-
sume that for a query Q, we can define a set of rules, such as an edge relaxation
(e.g., /a to //a), a subtree promotion (e.g., //a/b[Q1]//Q2 to //a[.//Q2]/b[Q1]), a
leaf node deletion (e.g., //a/b/c to //a/b) [2], and label generation (e.g., //a to
//∗), etc. With above rules, we may (possibly) enumerate the complete candidate
views, while we still face the two difficulties addressed in Introduction. (1) The
number of candidate views is prohibitively large. The basic relaxation rules [2]
already generate an exponential amount of candidates. Taking label generation
into account, the problem space is exponentially exploded. (2) It is infeasible to

identify the relationships among all candidate views, which requires P
|C|
2 compar-

isons, and per containment check is NP-hard. We describe a new way to generate
a small view set V , which is a subset of the complete set (i.e., V ⊆ C) but ensures
to be a superset of the optimal solution (i.e., O ⊆ V).

3 Candidate View Generation

We first discuss the problem of answering a query using materialized views only,
i.e., without accessing the base data. We then describe how to generate a minimal
set of views as candidates for materialization.

3.1 Query/View Answerability Criteria

// a @n < 1998 or @s = “str”

/ ∗

// b c/ ∗ //d

aQ1 lQ1
pQ1

aQ2 lQ2
pQ2

aQ3 lQ3
pQ3

sQ1

sQ2

sQ3

Fig. 2. Query Steps

Recall that in Table 2, each query
Q is represented as a sequence of
location steps Q = sQ1

sQ2
· · · sQn

.
Here, each step sQi

has the form
aQi

lQi
[pQi

], where aQi
∈ {/, //} is

an Axis, lQi
is an element name or

wildcard ∗ for NameTest, and pQi
is

a predicate that can be any xpath

fragment or empty. Figure 2 shows
the three steps of query Q : //a[@n <
1998 or @s = “str”]/ ∗ //b[c/ ∗ //d]. For materialization, the xml fragments that
satisfy the query and rooted at the label of the last step (i.e. b) will be materi-
alized as deep copies of xml fragments.

Criteria for answerability. Given a view V and a query Q, where V :
sV1

sV2
· · · sVm

and Q : sQ1
sQ2
· · · sQn

, V answers Q, denoted as V � Q, iff
the following conditions are satisfied: (1) m ≤ n; (2) sQi

≡ sVi
(equivalent) for

1 ≤ i ≤ m− 1; and (3) sQm
sQm+1

· · · sQn
⊑ sVm

.
Item 1 states that the number of view steps must be no more than the

number of query steps. Item 2 declares that the first m− 1 query steps must be
exactly the same as corresponding view steps. Therefore, we need not access the
base data to refine the materialized view fragments. Two steps are equivalent,
denoted as sQi

≡ sVi
, iff aQi

= aVi
(the same axis), lQi

= lVi
(the same label)

and pQi
≡ pVi

(equivalent predicates). Though being NP-hard for testing the
equivalence/containment of two predicates in theory, the predicates are typically
not complicated such that it could be handled in real applications. Item 3 claims
that the xpath fragment with the form sQm

sQm+1
· · · sQn

is contained in the
xpath fragment sVm

, which guarantees that the query result can be extracted
from the materialized view result. This criteria are similar to the ones used
in [16].

3.2 Constructing A Minimal Query

Given two queries Q1 and Q2, we say Q is a minimal query that answers Q1

and Q2, iff Q � Q1, Q � Q2, and there does not exist another query Q′ where
Q′

� Q1, Q
′
� Q2 and Q′

� Q. We have the following theorem.

Theorem 1. Given two queries P, Q, the minimal query that answers both P
and Q exists and is unique.

Proof. There exists a query /∗ (abbreviation of /child::∗) that answers both P
and Q. The query /∗ actually materializes the very first root element of an xml

document, which carries the entire information of an xml document (the virtual
document root is exclusive).

Next we prove by construction that there exists a minimal query V , where
V � P , V � Q. For any query V ′, if V ′

� P and V ′
� Q, then V ′

� V . We depict
the view V and two queries P, Q in Figure 3.

aV1
lV1

[pV1
]

aV2
lV2

[pV2
]

aVk
lVk

[pVk
]

aP1
lP1

[pP1
]

aP2
lP2

[pP2
]

aP3
lP3

[pP3
]

aPm
lPm

[pPm
]

aQ1
lQ1

[pQ1
]

aQ2
lQ2

[pQ2
]

aQ3
lQ3

[pQ3
]

aQn
lQn

[pQn
]

V P Q

Fig. 3. Representation of Queries

Based on the criteria for query/view answerability, for any V that answers
P and Q, we have the followings:

V � P ⇒ aVi
= aPi

1 ≤ i ≤ k − 1;
lVi

= lPi
1 ≤ i ≤ k − 1;

pVi
≡ pPi

1 ≤ i ≤ k − 1;
aPk

lPk
[pPk

] · · · aPm
lPm

[pPm
] ⊑ aVk

lVk
[pVk

]
V � Q⇒ aVi

= aQi
1 ≤ i ≤ k − 1;

lVi
= lQi

1 ≤ i ≤ k − 1;
pVi
≡ pQi

1 ≤ i ≤ k − 1;
aQk

lQk
[pQk

] · · · aQn
lQn

[pPn
] ⊑ aVk

lVk
[pVk

]

With regards to the minimal query, the number of steps should be as long as
possible (e.g. a[./b/c] � a/b[./c] � a/b/c), and the predicates should be as re-
strictive as possible. Therefore, for the minimal query V that answers both P
and Q, k should be the first position where sPk

6≡ sQk
, i.e., some of the following

conditions are not satisfied: aPk
= aQk

, lPk
= lQk

or pPk
≡ pQk

.
Next step is to find a predicate that minimally contains both predicates:

aPk
lPk

[pPk
] · · ·aPm

lPm
[pPm

] and aQk
lQk

[pQk
] · · · aQn

lQn
[pQn

]. Logically, the min-
imal predicate containing two predicates that are defined on the same schema is
the union of them, i.e., using “or”. Above construction is unique, and any other
query V ′ that answers both P and Q must answer V based on the query/view
answerability, which proves that V is minimal. �

We denote by Q1 ◦ Q2 the minimal query that may answer both Q1 and
Q2. Note that we say the minimal query is unique in terms of equivalence, e.g.,
a/b and a[./b]/b are different in syntax but always produce the same result.
Therefore, Q1 ◦ Q2 is a singleton (i.e. only one view instead of a set of views).
Furthermore, we have the following proposition.

Proposition 1. If a query P answers a query Q, then the minimal query that
answers P and Q is P , i.e., P ◦Q = P iff P � Q.

1: P = sP1
sP2
· · · sPm

;
2: Q = sQ1

sQ2
· · · sQn

;
3: if sP1

6≡ sQ1
then

4: V = /∗, or P if Q ⊑ P , or Q if P ⊑ Q;
5: return V ;

6: else
7: V = sP1

;

8: end if
9: k = min(m,n);

10: for i from 2 to k
11: if sPi

≡ sQi

12: V + = sPi
;

13: else

14: break

15: end if

16: end for
17: V + = [sPi+1

· · · sPm
or sQi+1

· · · sQn
];

18: return V

Algorithm 1 MinQuery(P, Q)Computing the minimal query. We
describe an algorithm to compute the op-
eration Q1 ◦ Q2. Recall that a query Q
can be represented as a sequence of steps
as: Q = sQ1

sQ2
· · · sQn

, and each step
is represented in the form: Axis NameTest

Predicates? (aQi
lQi

pQi
). Two steps are

equivalent, if their Axis, Name and Pred-

icates? are equivalent, correspondingly. Al-
gorithm 1 shows how to compute the min-
imal query. The correctness of this algo-
rithm can be directly verified from the
proof of Theorem 1 (by construction).

Next we illustrate why the joined view
V = /∗ if sP1

6≡ sQ1
and P, Q are not

contained by each other (lines 4-5). Here,
we may safely omit some predicates. For example, given P : a[./c/d/e] and
Q : b[./c/d/e], the minimal query V = P ◦Q = /∗ while not V ′ = / ∗ [./c/d/e]
which seems more restrictive. There are only two cases for predicates: true or
false. (1) [./c/d/e] is true, to materialize V ′ is equivalent to materialize V ,
the root element. (2) [./c/d/e] is false, the result of V ′ is empty. We do not
materialize a query with empty result. Both bases are normalized to /∗.

We consider the following cases for minimizing the predicates. (1) Com-
parison predicates. The minimization of comparisons with numeric constant is
straightforward. For example, n < x and n < y can be minimized to n < x iff
x ≤ y; n > x or n > y can be minimized to n > x iff x ≥ y, etc. (2) Path min-
imization. We have P or Q = Q if P ⊑ Q; P and Q = P if P ⊑ Q. Algorithms
to find the minimized query are applicable to our approach, which are omitted
here due to space constraints. [12] and [1] investigate to minimize comparison
predicates and minimize tree pattern queries, respectively.

3.3 Optimality of Candidate Views

In this section, we first describe the cost model, as a criterion for measuring
views to answer a set of queries. We then discuss how to generate a view set
as candidates, which is guaranteed to be a superset of the optimal solution and
safely avoids enumerating all potential views.

We use size(X , V) to denote the result size of applying view V over an xml

database X . When the xml database X is clear from the context, we use size(V)
as a simplification. Without loss of generality, we assume that the materialized
views do not have index support. Evaluating a query over a materialized view
requires one scan of the materialized xml fragments. We use card(V) to denote
the number of labels in an xml view V . We have the following general cost
estimation model of evaluating query Q based on view V materialized over an
xml database X :

cost(X ,V, Q) = α · size(X , V) + β · size(X , V) · card(Q) (2)

When the view is materialized on a disk, the overhead is dominated by disk
I/O, in which case α≫ β. Otherwise, if the views are materialized in a semantic
cache, the overhead is dominated by the computational cost, which is determined
by the materialized view fragments and the query size, thus α≪ β.

Naturally, we have size(Q′) ≥ size(Q) if Q′
� Q. For two views V and V ′, we

say V is better than V ′ if V can be used to obtain a smaller value of Equation 1.
Given a single query Q and two views V and V ′, where V � Q and V ′

� Q, V
is better than V ′ in answering Q iff size(V) < size(V ′). Furthermore, given a
query set Q and two views V and V ′, where V � Q and V ′

� Q, V is better
than V ′ in answering Q iff size(V) < size(V ′). Recall that V � Q means that
V may answer each query Q in Q.

There are other factors that might influence the cost model, which are not
considered here. These factors may include the storage model of the materialized
xml fragments, and different indices that may be exploited, which may lead to a
more complicated model. However, we believe that our cost model, being simple
but general, enables us to investigate representative algorithms.

Finding a candidate set. Next we discuss how to generate a candidate view
set that is a superset of the optimal solution. We show some properties of the
minimal query first. The minimal query, computed over the operator “◦”, satisfies
the following identities:

(L1) P ◦Q = Q ◦ P (commutative law)
(L2) Q ◦Q = Q (idempotent law)
(L3) (P ◦Q) ◦ V = P ◦ (Q ◦ V) (associative law)

The first two equivalences can be verified directly through Algorithm 1. We
simply illustrate L3 next. Based on Algorithm 1, assume that P, Q, V have k, m, n
steps, respectively, and the ith step is the first step that sPi

, sQi
and sVi

are
not equivalent. Both (P ◦ Q) ◦ V and P ◦ (Q ◦ V) are equivalent to the form:
sP1
· · · sPi−1

[sPi
· · · sPk

or sQi
· · · sQm

or sVi
· · · sVn

] such that identity L3 holds.
Thus, the computation of the minimal view of a query set is order independent.

Given a workload Q = {Q1, Q2, · · · , Qn}, we first aggregate them pairwise
to get

(

n
2

)

views, which are obtained by computing Q1 ◦ Q2, Q1 ◦ Q3, etc. We
then can aggregate Q1 ◦Q2 and Q1 ◦Q3 to get Q1 ◦Q2 ◦Q3, and so on. We get
V = {Q1, · · · , Qn, Q1 ◦Q2, Q1 ◦Q3, · · · , Qn−1 ◦Qn, · · · , Q1 ◦Q2◦· · ·◦Qn}. There
are O(2n) candidate views generated, which is deduced by

(

n
1

)

+
(

n
2

)

+ · · ·+
(

n
n

)

=
2n−1. Although the worst case is still exponential, the size of candidate views is
much smaller than all potential views. Furthermore, we will introduce a simple
bound to significantly reduce the number of generated views.

Next we illustrate why we can safely ignore any view V ′ ∈ C (C is all views
that can be generated) if V ′ /∈ V , while still ensuring optimality. This question
comes from the fact that, for two queries Q1, Q2 and V = Q1 ◦ Q2, there may
exist another view V ′, where V ′

� V which is not considered for materialization.
Here, V ′ can be potentially used to answer some query Q3 but is not generated.

We prove this by showing that there exists another candidate view V ′′ ∈ V
that is better than V ′. Assume that Q′ is a subset of Q that V ′ can answer each
query in Q′, i.e., Q′ = {Q|Q ∈ V ∧ V ′

� Q}. V ′ is not in V , therefore, V ′ is not

the minimal view to answer Q′. Suppose that the minimal view to answer Q′ is
V ′′. Naturally, we have V ′

� V ′′ and V ′′ is better than V ′ for the given workload
Q to minimize Equation 1.

4 Candidate View Organization

View organization. We organize the candidate views V as a directed acyclic
graph (named vcube), which is denoted as G(N, E). Each node u ∈ N(G) rep-
resents a view u

V
in V . Each node u has a level, denoted as level(u), which is

the number of queries in the original workload Q that are used to generate the
view u

V
. There is an edge (u, v) ∈ E(G), iff level(u) = level(v) + 1 and v

V

can be used to generate u
V
, i.e., the query set used to generate v

V
is a subset of

the query set used to generate u
V
.

Q1 Q2 Q3

Q1 ◦Q2 Q1 ◦Q3 Q2 ◦Q3

Q1 ◦Q2 ◦Q3

Fig. 4. Sample vcube

Example. Given a workloadQe = {Q1, Q2, Q3},
the level of Q1◦Q2 is 2, i.e., level(Q1◦Q2) = 2.
There is an edge from Q1 ◦Q2 ◦Q3 to Q1 ◦Q2,
since level(Q1◦Q2◦Q3) = 3, level(Q1◦Q2) =
2 and {Q1, Q2} is a subset of {Q1, Q2, Q3}. The
vcube for workload Qe is shown in Figure 4.

It deserves noting that we only maintain edges
between adjacent levels of views e.g. no edge
from Q1 ◦ Q2 ◦ Q3 to Q1, although the former
answers the latter. The nice property is that, the
answerability is traced not only by direct edges, but also by reachability relation-
ships. Based on vcube, our problem is reduced to finding a minimum weight set
of nodes that covers all leaves and minimizes Equation 1. We say vcube guar-
antees optimality since the optimal view set is subsumed in all candidates and
answerability is verifiable. Next we illustrate why we could safely avoid checking
the answerability between two unrelated views e.g. Q1 ◦Q2 and Q3.

In Figure 4, there are two edges from Q1 ◦ Q2, to Q1 and Q2, respectively.
Assume that Q1◦Q2 can also answer Q3 but there is no edge from Q1◦Q2 to Q3,
whether we would be underestimating Q1 ◦Q2, since we consider it to answer Q1

and Q2 only. According to Proposition 1, Q1 ◦Q2 ◦Q3 = Q1 ◦Q2 if Q1 ◦Q2 � Q3,
and there should have existed a path from Q1 ◦ Q2 ◦ Q3 to Q3. Therefore, the
optimal solution can always be identified. More specifically, assume that there
are two nodes u, v ∈ V (G) where u

V
� v

V
but there is no path from u to v. The

nearest common ancestor (node w) of u and v satisfies w
V

= u
V
◦ v

V
= u

V
since

u
V

� v
V
. The path from u to v could thus be omitted.

The benefits of edge construction in vcube are twofold. (1) The edges can
be directly constructed when computing the minimal views, without checking
the answerability between views, which is expensive. (2) The number of edges
maintained is much smaller than the edges computed depending on answerability.
This can reduce both the graph size (the number of edges) and the overhead of
searching optimal solution over it.

View graph optimization. We describe to optimize the view graph by safely
omitting some views to be generated. We introduce a special view as an upper
bound. The special view is ∆ : /∗, whose result is just the root element of X and
would never be materialized. For any query Q, we have Q ◦∆ = ∆. Therefore,
if some node in the bottom-up construction is ∆, we do not generate any other
nodes that may reach it, which can greatly reduce the candidates to be generated.
Recall that in Equation 1, we have a size constraint B. Therefore, if some view
V has the estimated materialized size larger than B, we do not materialized V
and can safely set V to ∆.

5 Materialized View Selection Algorithms

Finding the optimal solution for Equation 1 is NP-hard, which can be reduced to
the set cover problem1. In this section, we describe heuristic methods to identify
approximate solutions.

Estimating view size. View selection algorithms require knowledge of the size
of each view. There are many ways of estimating the sizes of views [19,23]. The
approach we adopt is sampling, i.e., running views on a representative portion
of the base data and multiplied by a scaling factor.

We have to consider space-time tradeoffs in view selection. In the space-
optimized perspective, we would like to select the views with the smallest size to
answer as many queries as possible. In the time-optimized perspective, we will
materialize the query workload only, which can answer any given query directly
but with a large size. We will first discuss an algorithm targeting space-optimized,
followed by an algorithm for space-time consideration.

5.1 Space-Optimized Algorithm

The goal of space-optimized is to material the smallest xml fragments to an-
swer a given query workload. We adopt a bottom-up, level-by-level dynamic
programming strategy over the vcube.

Given a candidate view set V generated from a workload Q, its vcube

G(N, E) and a node u ∈ N(G), we use views(u) to represent the set of queries
that generate the view u

V
e.g. views(Q1 ◦ Q2) = {Q1, Q2}. Conversely, for a

subset of queries Q′, we denote by genv(Q′) the views generated by aggregating
each query in Q′ e.g. genv(Q1, Q2) = Q1 ◦ Q2. Our recursive definition of the
minimum cost of computing size(u

V
) for each node u ∈ N(G) is as follows:

size(u
V

) = min{size(genv(views(u
V

) − views(v
V

))) + size(v
V

), size(u
V

)} (3)

here, node v ∈ N(G) is any graph node that is reachable from u. For instance,
when computing the size of Q1 ◦ Q2 ◦ Q3, we compare its size with the sum of
sizes of each combination in (Q1, Q2 ◦ Q3), (Q2, Q1 ◦ Q3) and (Q3, Q1 ◦ Q2),
and record the smallest one.

1 http://en.wikipedia.org/wiki/Set cover problem

1: for i from 1 to |N(G)| do

2: estimate size(ni)

3: end for
4: for i from |Q|+ 1 to |N(G)| do

5: for j from 1 to |N(G)| do

6: if genv(views(ni) ∪ views(nj)) doesn’t exist
or

(

views(nk) = views(ni) ∪ views(nj)
and size(nk) > size(ni) + size(nj)

)

7: size(nk)← size(ni) + size(nj)

8: end if

9: end for

10: end for

Algorithm 2 SpaceOptimal(G)
The intuition of Equation 3

is to compute the smallest size
for each graph node from all
the views that it might an-
swer. Algorithm 2 shows a dy-
namic programming based ap-
proach with time complexity
O(n2) where n is the num-
ber of graph nodes. Here, we
use ni to represent the i-th
node in the bottom-up, level-
by-level traversal mode. Ini-
tially, each view has an esti-
mated size (lines 1-3). In each iteration (leaf views could be skipped in line 4), we
compute the size of one view V by counting all the views that are answerable by
V , but marking the smallest size only. Note that a view might not exist in graph
originally, if its size exceeds a given upper bound, while this view will be used
(not materialized) in selecting views in our dynamic program. After computing
the last view (the graph root), we could find the smallest xml fragments to
materialize to answer the given query workload Q. We illustrate this algorithm
by an example next.

Q1 Q2 Q3

Q1 ◦Q2 Q1 ◦Q3 Q2 ◦Q3

Q1 ◦Q2 ◦Q3

15 15 20

35 25 30

35

Fig. 5. vcube with Sizes

Example. Consider the vcube in Figure 5, each
view is associated with an estimated size. As-
sume that the size constraint is B = 40. We start
with an initial view set V = {Q1, Q2, Q3}. Con-
sider Q1 ◦Q2, which is omitted since size(Q1 ◦
Q2) = 35 > size(Q1)+size(Q2) = 30. However,
Q1◦Q3 and Q2◦Q3 are considered to be materi-
alized since size(Q1◦Q3) < size(Q1)+size(Q3)
and size(Q2◦Q3) < size(Q2)+size(Q3). To an-
swer all queries Q, materializing Q1◦Q3 and Q2

requires the size 40, while for Q2 ◦ Q3 and Q1, it requires 45 > 40. Therefore,
we replace Q1, Q3 in V by Q1 ◦Q3 and V = {Q1 ◦Q3, Q2}.

Next we consider Q1◦Q2◦Q3, whose estimated size is less than the summation
of Q1 ◦Q3 and Q2, i.e., size(Q1 ◦Q2◦Q3) = 35 < size(Q1 ◦Q3)+size(Q2) = 40.
Furthermore, size(Q1◦Q2◦Q3) = 35 < B = 40, thus we have V = {Q1◦Q2◦Q3}.

5.2 Space-Time Algorithm: A Greedy Solution

In above example, the space-optimized approach only considers to use the small-
est sized views to answer the given workload. However, materializing Q1 ◦ Q3

and Q2, whose total size is 40, requires a larger size but may have a lower query
execution time.

Next we consider a space-time optimized approach. We define a utility func-
tion on the view graph, for each candidate view V and a workload Q, where

each query Qi ∈ Q is associated with a weight wi.

util(V) =
ΣV �Qi

wi

size(V)
(4)

here, we compute the utility of a view V by considering how it can be used to
improve the query response time. The utility value is in inverse proportion to
the size of view, which means that the smaller the materialized size of a view,
the larger utility value it has. The utility value is in direct proportion to the
summated weights of queries the view may answer, which means that the more
queries the view can answer, the larger the utility value will be. The weight of
a view could be query independent as query frequency or query dependant like
full-resp-time/view-resp-time.

Algorithm description. We simply describe the algorithm of heuristically se-
lecting a set of views. (1) Compute the utility value of each view in the view
graph, and select the one with the largest utility value. (2) Remove the selected
view and all queries it may answer. Recompute the utility values of remaining
views. (3) Repeat this procedure until all queries can be answered or the total
size exceeds the size constraint B. This greedy strategy is similar to the one used
in [11] for computing data cube.

6 Performance Study

We report on empirical results in two orientations. Firstly, we measure the two
algorithms for selecting materialized views. Secondly, we study the performance
gain using materialized views, against the evaluation over the base data (bd for
short). For simplicity, we represent our space-optimized algorithm as so, and
the greedy strategy as gr.

The experiments were conducted on a PC 1.6GHz machine with 512MB of
memory, running Windows XP. The algorithms were coded in C++. We used
Berkeley DB XML2 for managing xml data with basic index support and storing
views. We used XMark as our test benchmark, with 16 queries (not listed for space
consideration). Q1−4 are in the form /site/people/person[@id=“person#”]//? where
person# represents a person id (e.g. person10) and ? a NameTest (e.g., name);
queries Q5−8 are in the form /site/regions//item[@id=”item#”]//?; queries Q9−12

are in the form /site/closed auctions/closed auction//?; and queries Q13−16 are in the
form //open auctions//open auction[Expr1][Expr2]//? where Expr1 is a path predicate.

6.1 Selecting Views in Practice

We mainly measure the effect of size parameters in two selection algorithms. The
first group of experiments is to fix the size limitation for each single view large
enough (e.g. the document size), while varying the total size upper bound (B).
Figure 6 shows the number the views selected when varying the upper bound B

2 http://www.oracle.com/database/berkeley-db/xml/index.html

 6

 8

 10

 12

 14

 16

4020104210.25

S
el

ec
te

d
V

ie
w

s

Size Upperbound (MB)

SO
GR

(a) XMark 4M

 6

 8

 10

 12

 14

 16

402010421

S
el

ec
te

d
V

ie
w

s

Size Upperbound (MB)

SO
GR

(b) XMark 8M

Fig. 6. Varying Size Upperbound B

for different documents. Here in x-axis, 0.25 means 0.25MB and 1 for 1MB, etc.
Both sub-figures show that, along with the enlarging size constraint, the number
of views for both algorithms increase. For example, for 4MB document, the so

selects 10 to 12 views and gr picks 13 to 15 views. When the constraint B exceeds
some threshold (e.g. 2MB for 4MB document), the size constraint cannot affect
the result of view selection. This group of experiments also tells that we could
use a relative small size constraint, e.g., half of document size for XMark, to get
the optimal solution. The benefit to select a small size bound is that, answering
queries over base data could be accelerated by underlying indices. This could be
faster than a materialized view without index support.

We also examine how the size limit of each view (parameter b) affects the
size of vcube in terms of number of graph nodes. Recall that in a vcube, if the
size of some view exceeds b, we don’t generate this graph node. Theoretically,
the vcube size of a workload of 16 queries is 216 = 65536. Take an Xmark 4MB

document and fixed B =1M. If we set b to be 4MB, there are 24 nodes in vcube.
When we change b to 1MB, there are 16 nodes generated. The cause of this
result comes from two facts: (1) the views that might answer queries in different
groups will have a large size and thus are not materialized; (2) the number of
views materialized for the same group of queries decreases when we restrict b.

Due to the small size of vcube, the costs for both selection strategies are
surprisedly small. Note that the size of each view is pre-estimated using a small
sample. In our case, we use an XMark 1MB document and estimate with a scal-
ing factor (e.g. 4 for an XMark 4MB document). Therefore, the selection is only
affected by the number of graph nodes but not the document size. It takes 10ms

for so strategy and 50ms for gr strategy, and this basically keeps the same for
different sized XMark documents.

In the worst case, the estimated view size via aggregating two queries exceeds
b. This case is reflected in above tests where no views generated for two groups
of queries. However, the query might be materialized if its size is below b.

6.2 Answering Queries using Materialized Views

We compare the response time of so, gr and bd (without using views), on
top of Berkeley DB XML. We test XMark documents for different factors, from

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Q16Q15Q14Q13Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

E
la

ps
ed

 T
im

e
(s

ec
)

BD
SO
GR

(a) XMark 4M

 0

 1

 2

 3

 4

 5

 6

 7

Q16Q15Q14Q13Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

E
la

ps
ed

 T
im

e
(s

ec
)

BD
SO
GR

(b) XMark 32M
Fig. 7. Answering Queries using Views

1, 2 to 32. The weights of queries are all set to 1 as a normalized frequency in
equivalent weights. All tests give similar results, so we only report two documents
in Figure 7, where x-axis carries all test queries and y-axis its response time in
millisecond. This group of experiments verifies two important goals as expected:
(1) Answering queries using materialized views is much faster than evaluating
over the base data, even if the base data is well indexed. The reason is simple,
as the materialized views have smaller size and many structural joins of queries
have been pre-evaluated by views. (2) gr outperforms so in terms of response
time. This comes from the different aims of algorithm designs. so aims at an
optimized space consumption, while gr balances the space overhead and cost
estimation model for query processing, which is simple yet general and effective.

7 Conclusion and Future Work

We have described a framework to select xml views for materialization. For a
given workload, we present a new way to generate a small number of candidates
while ensuring optimality. Based on a well organized graph structure (vcube)
for maintaining a minimal set of candidate views, we present two heuristic algo-
rithms for view selection. We experimentally demonstrate that query response
time could be significant reduced using materialized views. Moreover, the vcube

gives full possibilities to develop other algorithms with different aims and for fur-
ther optimization.

In the future: (i) We plan to further develop algorithms over vcube, for
both better selected views and faster computation; (ii) In this paper, we store
materialized views using a disk-based database. We would like to cache views
using main-memory databases, to examine the advantage of selecting material-
ized views in different environments. (iii) We want to implement view selection
as a transparent optimization strategy, which is self-tuning and works off-line by
analyzing query logs. (iv) Incremental (or lazy) materialized view maintenance
is an interesting topic, compared with re-materialization each time for changed
base data and query logs. (v) We also plan to investigate, as a relaxed version,
the problem of view selection that allows to access the base data.

References

1. S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava. Minimization of
tree pattern queries. In SIGMOD, 2001.

2. S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D. Toman. Structure
and content scoring for XML. In VLDB, 2005.

3. S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit. FleXPath: Flexible structure
and full-text querying for XML. In SIGMOD, 2004.

4. A. Balmin, F. Özcan, K. S. Beyer, R. Cochrane, and H. Pirahesh. A framework
for using materialized XPath views in XML query processing. In VLDB, 2004.

5. E. Baralis, S. Paraboschi, and E. Teniente. Materialized views selection in a mul-
tidimensional database. In VLDB, 1997.

6. R. Chirkova, A. Y. Halevy, and D. Suciu. A formal perspective on the view selection
problem. In VLDB, 2001.

7. W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Rewriting regular xpath queries
on xml views. In ICDE, 2007.

8. S. D. Gribble, A. Y. Halevy, Z. G. Ives, M. Rodrig, and D. Suciu. What can
database do for peer-to-peer? In WebDB, 2001.

9. H. Gupta. Selection of views to materialize in a data warehouse. In ICDT, 1997.
10. H. Gupta and I. S. Mumick. Selection of views to materialize under a maintenance

cost constraint. In ICDT, 1999.
11. V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes effi-

ciently. In SIGMOD Conference, 1996.
12. J. E. Hopcroft and J. D. Ullman. Set merging algorithms. SIAM J. Comput., 2(4),

1973.
13. H. J. Karloff and M. Mihail. On the complexity of the view-selection problem. In

PODS, 1999.
14. D. Kossmann. The state of the art in distributed query processing. ACM Comput.

Surv., 32(4), 2000.
15. L. V. S. Lakshmanan, H. Wang, and Z. J. Zhao. Answering tree pattern queries

using views. In VLDB, 2006.
16. B. Mandhani and D. Suciu. Query caching and view selection for XML databases.

In VLDB, 2005.
17. G. Miklau and D. Suciu. Containment and equivalence for an XPath fragment. In

PODS, 2002.
18. I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of data cubes and

summary tables in a warehouse. In SIGMOD Conference, 1997.
19. N. Polyzotis, M. N. Garofalakis, and Y. E. Ioannidis. Selectivity estimation for

xml twigs. In ICDE, 2004.
20. A. Sawires, J. Tatemura, O. Po, D. Agrawal, A. E. Abbadi, and K. S. Candan.

Maintaining XPath views in loosely coupled systems. In VLDB, 2006.
21. A. Sawires, J. Tatemura, O. Po, D. Agrawal, and K. S. Candan. Incremental

maintenance of path expression views. In SIGMOD Conference, 2005.
22. N. Tang, J. X. Yu, M. T. Özsu, B. Choi, and K.-F. Wong. Multiple materialized

view selection for XPath query rewriting. In ICDE, 2008.
23. W. Wang, H. Jiang, H. Lu, and J. X. Yu. Bloom histogram: Path selectivity

estimation for xml data with updates. In VLDB, 2004.
24. W. Xu and Z. M. Özsoyoglu. Rewriting XPath queries using materialized views.

In VLDB, 2005.
25. J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view design in

data warehousing environment. In VLDB, 1997.

